
 

 

 

Abstract— Brain-computer interfaces (BCIs) require real-

time feature extraction for translating input EEG signals 

recorded from a subject into an output command or decision. 

Owing to the inherent difficulties in EEG signal processing and 

neural decoding, many of the feature extraction algorithms are 

complex and computationally demanding. Presently, software 

does exist to perform real-time feature extraction and 

classification of EEG signals. However, the requirement of a 

personal computer is a major obstacle in bringing these 

technologies to the home and mobile user affording ease of use. 

We present the FPGA design and novel architecture of a 

generalized platform that provides a set of predefined features 

and preprocessing steps that can be configured by a user for BCI 

applications. The preprocessing steps include power line noise 

cancellation and baseline removal while the feature set includes 

a combination of linear and nonlinear, univariate and bivariate 

measures commonly utilized in BCIs. We provide a comparison 

of our results with software and also validate the platform by 

implementing a seizure detection algorithm on a standard 

dataset and obtained a classification accuracy of over 96%. A 

gradual transition of BCI systems to hardware would prove 

beneficial in terms of compactness, power consumption and 

much faster response to stimuli. 

I. INTRODUCTION 

Research into brain-computer interfaces (BCIs) has been 
carried out over several decades as a means of enabling 
persons suffering from severe neuromuscular disabilities 
interact with their environment, have more autonomy and 
enjoy improved quality of life. BCIs typically consist of a 
signal acquisition front end, where, for instance, neuroelectric 
or haemodynamic activity of the brain is recorded, a 
preprocessing and feature extraction stage followed by a final 
classification stage connected to an output device. Present day 
BCIs include brain-controlled wheelchairs, spelling and 
communication devices, cursor control applications and 
robotic arm control systems which permit the brain to perform 
tasks bypassing conventional physiological output pathways. 
Although initially envisioned for the benefit of patients 
suffering from “locked-in syndrome” due to spinal cord injury, 
Amyotrophic Lateral Sclerosis (ALS), brain stem stroke etc., 
present day BCIs also target people who retain significant 
neuromuscular capabilities as a novel means of providing 
gaming and entertainment experience. 

Despite the amount of research conducted in this field, 
many promising systems still remained confined to research 

 
 

laboratories with studies investigating their long term use for 
patients who have most need of them just beginning [1]. One 
of the reasons for this delay in bringing BCIs to the home user 
has been the need for a bulky personal computer performing 
the analysis of brain signals and translation into output 
commands. Hence, there has been growing interest in 
developing BCIs on mobile platforms [2]. We present a 
generalized preprocessing and feature extraction platform for 
EEG signals on FPGA where features to be computed can be 
selected by a user. While in a typical BCI system only the 
initial stages of signal acquisition and amplification would be 
performed in hardware and the remaining ones (artefact 
suppression, feature extraction and translation) implemented 
in software, shifting this hardware-software interface even 
further would afford lower power consumption, greater 
compactness and parallel feature computation. 

II. LITERATURE REVIEW 

Complete BCI implementation on FPGA has been quite a 

recent concept. In 2010, Shyu et al. [3] published their work 

of a phase-encoded Steady-State Visually Evoked Potential 

(SSVEP) BCI multimedia control system and claim that, “this 

BCI system, to the authors' best knowledge, is the first design 

of a low-cost FPGA-based BCI.” The design essentially 

features an analog front end, an SSVEP processing module on 

FPGA and a wireless link to a multimedia device which also 

functions as a means to provide immediate feedback to the 

user. Although 3 electrodes are used to acquire EEG signals, 

the channels are combined at the pre-amplifier stage and the 

FPGA module only processes a single EEG signal. Shyu et al. 

[4] developed an SSVEP based BCI enabling a user to control 

the attitude of a hospital bed. An accuracy of 92.5% was 

achieved with an architecture very similar to the one used for 

the multimedia device controller. Both systems were 

developed using an Altera Cyclone EPC2C20Q FPGA. 

Khurana et al. [2] developed an FPGA-based real-time 

P300 spelling device to detect letters and digits on a 6x6 grid 

utilizing 7 EEG channels corresponding to electrode locations 

Cz, C3, C4, Pz, P3, P4 and Oz. They obtained a classification 

accuracy of 65.37% when 2 rounds of data per character was 

used. The system was designed with 3 MicroBlaze processors 

using a Spartan 3E FPGA. Lin and Huang [6] implemented a 

BCI system for controlling an electric wheelchair. They 

captured 2-channel EEG signals using NeuroSky ASICs 

which were transmitted to an FPGA-based controller via a 

Bluetooth link. A winking signal and an 𝛼 rhythm were 

processed to determine direction and motion of the 
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wheelchair. The system was implemented on a Spartan FPGA 

with a XC3S500E-PQ208 chip. 

There has also been considerable interest in developing 

energy efficient biomedical processors and System on Chip 

(SoC) architectures suitable for long term signal monitoring 

and alarm triggering. Kwong and Chandrakasan [5] 

developed a low power biomedical signal processing platform 

featuring a 16-bit microcontroller, SRAM and accelerators. 

The SoC is programmable and capable of running different 

types of algorithms in an energy efficient manner for long 

term monitoring. Sridhara et al. [7] developed an ultralow 

power embedded processor platform chip for medical signal 

processing. The processor comprises of an FFT, SRAM and 

DC-DC converter. They demonstrate the functionality of the 

SoC by implementing a seizure detection algorithm which 

utilizes band energies for threshold calculation. Verma et al. 

[8] developed a low-power SoC for continuous EEG 

monitoring and seizure onset detection. Band energies in 7 

frequency bands are computed using a bank of bandpass 

filters and a user may wear up to 18 channels. Classification 

was performed on a separate processing platforms. 

Most of the existing BCI implementations on FPGA 

process just a few channels of EEG recordings whereas a 

typical EEG headcap would have between 14-256 electrode 

locations. Also, due to inherent complexities in EEG signal 

processing, several applications that have shown promise 

require multiple types of features to be computed 

simultaneously (e.g. [9]). Currently, on-chip implementations 

of medical signal processors are only capable of extracting a 

single type of feature at a time. Moreover, each signal requires 

its own processing module. To overcome some of these 

drawbacks we present the FPGA implementation of a 

platform for EEG signal analysis capable of computing 

multiple types of features in realtime. We exploit the low 

bandwidth of scalp EEG signals to develop an architecture 

that reuses each basic feature extraction module through 

multiplexing. Section III of this paper details the overall 

architecture of the platform and the preprocessing stage, while 

Section IV describes the features we provide. Thereafter we 

provide a comparison of the results we obtained with existing 

software using recordings from the EMOTIV neuroheadset. 

We conclude with Section VI noting several possible future 

directions of work. 

III. PLATFORM ARCHITECTURE 

We utilize a multirate design in our system and partition the 

platform into two subsystems with a set of shared memories 

functioning as the interface between them. The first 

subsystem comprises of a bank of highpass and notch filters. 

Each digitized 24-bit EEG signal is filtered and read into 𝑛 

separate shared memories (𝑀𝑖). The first subsystem runs at 

the sampling frequency 𝑓𝑠 of the signal acquisition device. 

Once all sample points corresponding to a predefined epoch 

of EEG have been read in, data is read off from each of the 

shared memories in turn and fed into the feature extractors 

(FE) which belong to the second subsystem. This is run at a 

conventional FPGA clock frequency of 50 MHz. The limited 

bandwidth of the EEG signals enables us to extract features 

from each of the 𝑛 epochs serially (reusing an FE) before the 

next new EEG sample is read into the memory bank after 1/𝑓𝑠 

s. In this design we utilize three multiplexers to feed in the 

EEG samples into the FEs. The first one, first allows the EEG 

epoch recorded from the first electrode, stored in 𝑀1, to pass 

through whichever FEs have been enabled. Likewise, this is 

repeated for all the other (𝑛 − 1) single EEG epochs. The 

other two multiplexers serve to feed in any combination of 

two single EEG epochs into the bivariate FEs. If the FE 

modules require a large number of clock cycles for 

computation or signals from a large number of electrode 

positions are recorded, a multiple set of FEs could be utilized 

in parallel. A single set of FEs is sufficient for the set of 

measures we propose in this system. The architecture of the 

system is illustrated in Figure 1 and is capable of calculating 

multiple types of features simultaneously in realtime for non-

overlapping epochs as are typically required in asynchronous 

BCI applications. Typically the entire set of features in the 

platform would not be required at a time and a user has the 

ability to select whichever FEs that need to be activated by an 

enable signal. 

EEG signal processing frequently involves the calculation 

of multivariate features, hence we provide 2 bivariate 

measures in our design. Overall, the proposed system makes 

more efficient use of hardware by reusing resources instead 

of using a set of FEs for each channel. The set of features we 

provide include, 

 Discrete Wavelet Transform coefficients 

(Haar, Daubechies 4 and 6) 

 Power spectral density 

 Band energies 

 Correlation 

 Zero crossing histogram 

 Autoregressive coefficients 

 Phase synchronization 

 

In this paper we have implemented the platform for 14 

channels and 7 different feature vectors. This makes the 

variable 𝑛 = 14 and 𝑘 = 7 according to the architecture 

diagram in Figure 1. 

 
Figure 1: Platform architecture ( Mi - Shared Memory, FE - Feature 

Extractor ) 
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A. Preprocessing Stage 

Scalp EEG recordings in the microvolt range are 

susceptible to a number of internal and external sources of 

contamination. These include muscle noise, ocular artefacts, 

power line noise, baseline wander and motion artefacts. In our 

design, we utilize a set of 0.5 Hz highpass and 50 Hz notch 

Finite Impulse Response (FIR) filters to eliminate baseline 

drift and power line interference. Each of the 𝑛 channels of 

EEG pass through two separate 64-tap FIRs having 16-bit 

coefficients with quantization selected to maximize dynamic 

range. A window-based method was used to design both 

filters. 

IV. FEATURE EXTRACTION 

A. Discrete Wavelet Transform (DWT) 

Joint time-frequency analysis has been an invaluable tool 

in the study of non-stationary EEG signals. Temporal and 

spatial resolution in conventional spectrum analysis 

techniques are highly dependent on EEG segment length, 

model order and other parameters. Wavelet decomposition 

provides a time-frequency representation of EEG signals as a 

solution. The DWT has been used in applications such as the 

detection of seizures [10] and feature extraction based on 

Event Related Potentials [11]. 

We apply the DWT on each of the non-overlapping epochs 

of EEG data and perform 4-level decomposition into 5 

frequency sub-bands. Haar and Daubechies (db4 and db6) 

mother wavelets are used with a lifting-based structure. 

Classically, the WT is performed using a bank of highpass and 

lowpass filters. The lifting scheme provides an alternate, more 

efficient implementation of extracting DWT coefficients. 

Lifting steps for the three wavelets are indicated below. 

Let 𝑥 = {𝑥𝑙  | 𝑙 ∈  Ζ} be the EEG segment. The lowpass filter 

output is the sequence 𝑠 = {𝑠𝑙  | 𝑙 ∈  Ζ} while the highpass 

filter output is 𝑑 = {𝑑𝑙  | 𝑙 ∈  Ζ}. The intermediate sequences 

computed during lifting are indicated by 𝑠(𝑖) and 𝑑(𝑖). 

 

1) Harr 

𝑠𝑙
(0)

= 𝑥2𝑙             (1.1) 

𝑑𝑙
(0)

= 𝑥2𝑙+1         (1.2) 

𝑑𝑙 = 𝑑𝑙
(0)

− 𝑠𝑙
(0)

        (1.3) 

𝑠𝑙 = 𝑠𝑙
(0)

− (1/2) 𝑑𝑙     (1.4) 

2) Daubechies 4 

𝑑𝑙
(1)

= 𝑥2𝑙+1 − √3𝑥2𝑙            (2.1) 

𝑠𝑙
(1)

= 𝑥2𝑙 + (
√3

4
) 𝑑𝑙

(1)
+ (

√3−2

4
) 𝑑𝑙+1

(1)
  (2.2) 

𝑑𝑙
(2)

= 𝑑𝑙
(1)

+ 𝑠𝑙−1
(1)

         (2.3) 

𝑠𝑙 = (√3 + 1)/√2𝑠𝑙
(1)

       (2.4) 

𝑑𝑙 = (√3 − 1)/√2𝑑𝑙
(2)

      (2.5) 

3) Daubechies 6 

𝑠𝑙
(0)

= 𝑥2𝑙            (3.1) 

𝑑𝑙
(0)

= 𝑥2𝑙+1           (3.2) 

𝑑𝑙
(1)

= 𝑑𝑙
(0)

+ 𝛼(𝑠𝑙
(0)

+ 𝑠𝑙+1
(0)

)      3.3) 

𝑠𝑙
(1)

= 𝑠𝑙
(0)

+ 𝛽(𝑑𝑙
(1)

+ 𝑑𝑙−1
(1)

)       (3.4) 

𝑑𝑙
(2)

= 𝑑𝑙
(1)

+ 𝛾(𝑠𝑙
(1)

+ 𝑠𝑙+1
(1)

)     (3.5) 

𝑠𝑙
(2)

= 𝑠𝑙
(1)

+ 𝛿(𝑑𝑙
(2)

+ 𝑑𝑙−1
(2)

)     (3.6) 

𝑠𝑙 = 𝜁𝑠𝑙
(2)

           (3.7) 

𝑑𝑙 = 𝑑𝑙
(2)

/𝜁           (3.8) 

 

Here, 𝛼 = −1.586134342 𝛽 = −0.05298011854 𝛾 =
 0.8829110762 𝛿 = 0.4435068522 𝜁 = 1.149604398. 

The lifting scheme is implemented on FPGA as one of the 

feature extraction blocks and it will be capable of performing 

Discrete Wavelet Transform. Figure 2 illustrates the first three 

detail components of a four level decomposition using Harr 

wavelet. 

B. Power Spectral Density (PSD) 

Power spectral density of EEG signals has been utilized in 

the detection of seizures [12], diagnosis of depression [13], 

motor imagery based BCIs [14] and several other 

applications. The Welch method [15] is a non-parametric 

approach to estimate PSD of a time series using modified 

periodograms. In this design, we split each epoch of EEG 

samples into smaller sized fixed windows 𝑥𝑖[𝑛] with 50% 

overlap and a final circular overlap as proposed in [16]. Each 

segment is multiplied with a Hamming window 𝑤[𝑛] and its 

FFT is computed to yield the 𝑖𝑡ℎ modified periodogram, 

 

�̃�𝑋𝑋
𝑖 =

1

𝑀𝑈
|∑ 𝑥𝑖[𝑛]𝑤[𝑛]𝑒−𝑗2𝜋𝑓𝑛𝑀−1

𝑛=0 |
2
    (4) 

Here, 

𝑈 =
1

𝑀
∑ 𝑤2[𝑛]𝑀−1

𝑛=0         (5) 

 

The final PSD is obtained by averaging, 

 

𝑃𝑋𝑋
𝑊 (𝑓) =

1

𝐿
∑ �̃�𝑋𝑋

𝑖 (𝑓)𝐿−1
𝑖=0        (6) 

 

EEG samples are read from a shared memory and are 

multiplied by the coefficients of the Hamming window which 

are stored in a ROM. A separate address generator module is 

 
Figure 2 : Decomposition of 2s EEG epoch with Harr wavelet 
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used to generate the correct indices of each of the windows. 

The modified EEG window samples are then scaled and fed 

to an FFT module and their outputs are stored in separate 

memories. While the FFT output of the final modified 

window is valid, the values of all other stored periodograms 

are read off from memory, added and multiplied by a scaling 

term to yield the final PSD estimate. FPGA and MATLAB 

estimates of an epoch of EEG are depicted in Figure 3 (log 

values have been plotted for convenience). 

C. Band Energies 

An EEG signal can typically be decomposed into 5 separate 

frequency bands: 𝛿 (0.5-4 Hz), 𝜃 (4-8 Hz), 𝛼 (8-12 Hz), 𝛽 

(12-30 Hz) and 𝛾 (30-60 Hz). EEG band energies have been 

studied in numerous applications ranging from seizure 

detection and motor imagery identification to on-screen 

primitive shape classification [17]. 

Energy values of the 5 frequency bands are calculated by 

first computing the FFT of each EEG epoch and then 

summing the squares of the spectral components in each of 

the bands using separate accumulators. Energy of the 𝛾 band 

is calculated for the frequency range 30-45 Hz. 

D. Correlation 

Correlation measures the similarity between two EEG 

epochs. Cross-correlation refers to the correlation between 

two completely different EEG signals and the accompanying 

plot is known as a “correlogram”. Siuly and Li [18] used 

statistical features based on cross-correlation for motor 

imagery classification using a Least Square Support Vector 

Machine (LSSVM) and achieved an accuracy of 95.72%. 

Let 𝑥[𝑛] and 𝑦[𝑛] be the 2 EEG epochs, each having 

𝑁 samples. The 𝑚𝑡ℎ coefficient (𝑚𝑡ℎ lag) of the cross-

correlation is given by, 

 

𝑅[𝑚] = ∑ 𝑥[𝑖]𝑦[𝑖 − 𝑚]𝑁−|𝑚|−1
𝑖=0      (7) 

 

𝑚 = −(𝑁 − 1), −(𝑁 − 2), … ,0,1,2, … , (𝑁 − 2), (𝑁 − 1) 

 

In feature extractor block implementation 20 correlation 

coefficients are calculated for two different EEG epochs. The 

architecture is designed in a way that it can be extended easily. 

Each correlation coefficient is computed in parallel. 

Architecture is similar to a set of parallel FIR filters, while 

samples of 𝑥[𝑛] are used as filter coefficients and 𝑦[𝑛] being 

the signal that is filtered.  

E. Zero Crossing Histogram 

Zero crossing intervals of scalp EEG signals have been 

analyzed in the past and has been demonstrated to yield good 

results in detecting probable Alzeimer's disease and Vascular 

dementia [19], predicting seizures [20] and characterizing 

sleep spindles [21]. The zero crossing histogram is more 

robust in the presence of contaminating artefacts and is a 

convenient means of extracting dynamical information about 

the brain. Here, we provide a single-sample bin positive zero 

crossing histogram (i.e. number of samples between two 

successive points during which the signal crosses from 

negative to positive). A user may concatenate adjacent bins to 

create larger bins or variable bin sizes at a latter stage as may 

be required. 

The module utilizes simple logic to detect a positive zero 

crossing by comparing each sample and its predecessor to 

zero. If a positive sample is detected along with a preceding 

negative one, a counter is incremented until the next zero 

crossing occurs, at which point the counter is reset. At this 

instant, the last value held by the counter is utilized to 

increment the corresponding bin of the histogram which is 

stored in memory. After detecting all crossing in the EEG 

epoch, the values are read out and the memory is reset to 

contain all zeros. An example histogram for a 2s epoch of 

recorded EEG is shown in Figure 4. 

F. Autoregressive (AR) Coefficients 

Autoregressive modelling is an alternative to conventional 

Fourier-based methods for representing frequency 

information of a signal. In AR modelling the signal being 

modelled is considered as the output of an Infinite Impulse 

Response (IIR) filter when the input to this filter is white 

noise. In most of the applications the IIR filter coefficients are 

used as feature vectors. Anderson et al. [22] used multivariate 

AR models to discriminate between mental tasks of a human 

 
Figure 3 : MATLAB and FPGA estimates of PSD for a 2s EEG epoch 

 
Figure 4 : A 2s EEG epoch and its positive zero crossing histogram 
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subject. Pfurtscheller et al. [23] distinguished right and left 

motor imagery EEG using adaptive AR parameters to control 

an on-screen cursor. 

We compute AR coefficients for each EEG epoch. The 

order of an AR model should be increased proportional to the 

sampling frequency [24]. In our approach, Burg's algorithm 

proposed in [25] is used to estimate AR coefficients for a 

model of order 6. Each iteration of the Burg’s algorithm is 

implemented as a separate module and cascaded to compute 

6 AR coefficients. 

According to the Burg’s algorithm 𝑓𝑚(𝑛) and 𝑏𝑚(𝑛) are 

the forward and backward errors of order 𝑚 related to an EEG 

epoch 𝑥(𝑛). Let the AR coefficients are indicated by the 

symbols 𝑎1,1, 𝑎2,2, … , 𝑎𝑚,𝑚. For an intermediate stage 𝑟 of the 

algorithm, the inputs are the forward and backward errors of 

the previous stage ( 𝑓𝑟−1(𝑛) and 𝑏𝑟−1(𝑛)). The outputs of the 

𝑟𝑡ℎ  stage are the new set of forward and backward 

errors 𝑓𝑟(𝑛) , 𝑏𝑟(𝑛) and 𝑎1,1, 𝑎2,2, … , 𝑎𝑟,𝑟 coefficients. The 

nature of the algorithm makes the current stage depend on the 

previous stage outputs. Hence a cascaded system is suggested 

for the implementation.    

G. Phase Synchronization 

Extensive research has been pursued over the past several 

years into the analysis of EEG signals (both intracranial and 

scalp EEG) for developing algorithms to automatically detect 

and predict epileptic seizures. Algorithms that use bivariate or 

multivariate measures have been investigated in this 

particular field as they have shown to yield superior 

performance to univariate measures which lack spatial 

specificity. Phase synchronization has been one such measure 

that has yielded promising classification results [26], [27]. 

Phase synchronization is calculated to quantify the 

instantaneous phase lock between 2 EEG channels separated 

in space. The phase locking between 2 EEG signals 𝑉𝑜 and 𝑉1 

is estimated by first applying the Hilbert Transform to the 

signals to compute their real and imaginary components. The 

Hilbert Transform is approximated by a 64-tap FIR filter. The 

instantaneous phases of the 2 channels are then computed to 

yield 𝜙𝑘, 

 

𝜙𝑘 = arctan
𝐼𝑚{𝑉𝑘}

𝑅𝑒{𝑉𝑘}
 ;   𝑘 = 0,1    (8) 

 

The phase difference is then obtained as Δ𝜙 = 𝜙1 − 𝜙0. The 

phase locking value (PLV) between the 2 channels is then 

calculated as, 

 

𝑃𝐿𝑉 =
1

𝑁
√[∑ sin (Δ𝜙𝑖)

𝑁−1
𝑖=0 ]2 + [∑ cos (Δ𝜙𝑖)

𝑁−1
𝑖=0 ]2 (9) 

 

The module makes use of 4 CORDIC blocks to calculate 4-

quadrant arctan, sine, cosine and square roots of the incoming 

data points to obtain PLV for each EEG epoch in real time. 

The sine and cosine values of the phase differences are 

summed using 2 separate accumulators whose final output 

corresponding to all samples in the epoch is fed into the 

square root CORDIC block. 

V. RESULTS 

The platform was implemented on a Virtex 7 FPGA. We 

utilized the 14-channel EMOTIV neuroheadeset with a 

sampling frequency of 128 Hz for testing. For testing out each 

individual FE block, we used a 1 hour long single channel 

recording. This signal was then split into 1800 epochs of 2s 

(256 samples) duration. For each feature vector �̂� calculated 

in hardware, we compute the corresponding vector 𝑥 in 

MATLAB. The mean absolute error between the two 

estimates which occurs due to the fixed point arithmetic on 

FPGA is calculated as follows, 

 

error =
∑ |𝑥𝑖−𝑥𝑖|𝑖

∑ |𝑥𝑖|𝑖
× 100%      (10) 

 
Table 1 : Comparison of Computed Features with Software 

Feature Error Clock Cycles 

DWT Coefficients (Haar) 2.9808 × 10−6% 288 
DWT Coefficients (db-4) 0.0043% 608 
DWT Coefficients (db-6) 0.002957% 768 
Power Spectral Density 0.2286% 1130 
Autoregressive Coefficients 0.0568% 2839 

Zero-crossing Histogram 0% 515 
Band Energies ( 𝛿, 𝜃, 𝛼, 𝛽, 𝛾 ) 0.0727% 874 
Correlation 0.000351% 270 
Phase Synchronization 17.058% 423 

 

The error per feature vector of each epoch is obtained by 

averaging and the comparison of results is shown in Table 1 

along with the number of clock cycles (at 50 MHz clock 

frequency) taken for computation of each feature. The 

functionality of the complete multirate system was tested 

separately for all EEG channels and after computing features 

for the 𝑛 epochs (requiring 𝑛 × cycles per feature), over 

300000 spare clock cycles remain for any further application 

prior to receiving the next sample. 

Secondly, we validate our platform by implementing the 

seizure detection algorithm in [28]. db-4 and db-6 wavelet 

coefficients are extracted for the EEG epochs using hardware 

co-simulation for a dataset publicly available form University 

of Bonn (a detailed description about the dataset can be found 

in [29]). The best features for discriminating between the 2 

classes were selected using the Mann-Whitney test at a 

significance of 1%. We utilize 60% of the data for training 

and use the remainder for testing on an LSSVM classifier. We 

achieved an overall accuracy of 96.93% with a sensitivity of 

88.43% and a specificity of 99.06% on the test dataset. 

VI. CONCLUSION 

The need for a bulky PC has been one of the primary 

drawbacks in bringing BCIs to the home user. Consequently, 

there has been a recent interest in complete hardware 

implementation of these systems. However, many of the 

existing FPGA based BCIs process just a limited number of 

EEG channels and extract only a single type of feature. We 

present the FPGA design of a generalized preprocessing and 

feature extraction platform that is capable of computing 

multiple features in parallel as required by a user. We evaluate 

our platform twofold. Firstly, we use data recorded from the 
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EMOTIV neuroheadset and obtain results comparable with 

software. Secondly, we utilize our platform to extract features 

for a seizure detection algorithm and obtain good 

classification accuracy. Future work would include pushing 

the hardware interface of BCIs even further to include a set of 

classification algorithms. Extending the platform to include 

features commonly utilized in other biomedical signal 

processing applications (e.g. R-R intervals and area of QRS 

complexes in electrocardiograms) would also be another 

useful contribution.  
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